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Abstract. In this paper we prove an upper bound for the Lyapunov exponent γ (E) and a two-
sided bound for the integrated density of states N(E) at an arbitrary energy E > 0 of random
Schrödinger operators in one dimension. These Schrödinger operators are given by potentials of
identical shape centred at every lattice site but with non-overlapping supports and with randomly
varying coupling constants. Both types of bounds only involve scattering data for the single-site
potential. They show, in particular, that both γ (E) and N(E) − √

E/π decay at infinity at least
like 1/

√
E. As an example we consider the random Kronig–Penney model.

1. Introduction

In this paper we will consider random Schrödinger operators H(ω) in L2(R) of the form

H(ω) = H0 + Vω H0 = − d2

dx2
Vω =

∑
j∈Z

αj (ω)f (· − j) (1)

where {αj (ω)}j∈Z is a sequence of independent, identically distributed (IID) variables on a
complete probability space (�,F,P) having a common distribution measure κ (i.e. P{αj ∈
�} = κ(�) for any Borel set � ⊂ R). In what follows we always suppose that κ is
supported on a compact interval and the single-site potential f is integrable with support
in the interval

[− 1
2 ,

1
2

]
. Moreover, the random variables are assumed to form a stationary,

metrically transitive random field, i.e. there are measure-preserving ergodic transformations
{Tj }j∈Z such that αj (Tkω) = αj−k(ω) for all ω ∈ �. The spectral properties of the operator
(1) were studied in detail in [7, 9, 11, 16, 24]. The results are most complete for the case when
f is the point interaction (see [1]).

The integrated density of states N(E) and the Lyapunov exponent γ (E) are important
quantities associated with operators of the form (1) (see, e.g., [4]). In particular, according to
the Ishii–Pastur–Kotani theorem [15] the set {E : γ (E) = 0} is the essential support of the
absolute continuous part of the spectral measure for H(ω).
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The main idea of our approach is to approximate the operator (1) by means of the sequence

H(n)(ω) = H0 +
n∑

j=−n
αj (ω)f (· − j)

with unchangedH0, which converges toH(ω) in the strong resolvent sense. This differs from
the usual approach where one puts the whole system in a box, which then tends to infinity
(see, e.g., [4]). In [12] (see also [13]) we used this approximation to invoke scattering theory
for the study of the spectral properties of the limiting operator (1). Some other applications of
scattering theory to the study of spectral properties of such types of Schrödinger operators in
one dimension can be found in [11, 22].

One of the important ingredients of our approach developed in [12] is the Lifshitz–Krein
spectral shift function. The spectral shift function naturally replaces the eigenvalue counting
function usually used to construct the density of states for the operator (1). The celebrated
Birman–Krein theorem (see, e.g., [3]) relates the spectral shift function to scattering theory. In
fact, up to a factor of −π−1 it may be identified with the scattering phase for the pair (H(n)(ω),
H0), i.e. ξ (n)(E;ω) = −π−1δ(n)(E;ω) when E > 0,

δ(n)(E;ω) = 1

2i
log det S(n)(E;ω) = 1

2i
log det

(
T (n)ω (E) R(n)ω (E)

L(n)ω (E) T (n)ω (E)

)
.

Here |T (n)(E)|2 and |R(n)(E)|2 = |L(n)(E)|2 have the meaning of transmission and reflection
coefficients, respectively, such that |T (n)(E)|2 + |R(n)(E)|2 = 1. For E < 0 the quantity
ξ (n)(E;ω) equals minus the counting function for H(n)(ω).

In particular, in [12] we proved the almost certain existence of the limit

ξ(E) = lim
n→∞

ξ (n)(E;ω)
2n + 1

(2)

which we called the spectral shift density. Also we proved the equality ξ(E) = N0(E)−N(E),
where N(E) and N0(E) = π−1[max(0, E)]1/2 are the integrated density of states of the
Hamiltonians H(ω) and H0, respectively. This result also extends to higher dimension in the
continuous [14] and discrete [5] cases. Also we showed that almost certainly the Lyapunov
exponent γ (E) at energy E > 0 is given as

γ (E) = − lim
n→∞

log |T (n)(E;ω)|
2n + 1

(3)

where T (n)(E, ω) is the transmission amplitude for the pair of Hamiltonians (H(n)(ω), H0) at
energyE. We recall that γ (E) is defined as the upper Lyapunov exponent for the fundamental
matrix at energy E of the Schrödinger operatorH(ω). The connection between the Lyapunov
exponent and the transmission coefficient |T (n)ω (E)| was recognized long ago [17, 18]. A
complete proof has appeared in [12].

We note that the theory of the spectral shift function was also recently used to show that
the integrated density of states is independent of the choice of boundary conditions [19] on the
sides of a large box, in which the system is put.

The conditions on the random variables αj and the single-site potential f stated above are
slightly weaker than those in [12]. However, the results of [12] which will be used below also
remain valid in this more general case.

The aim of the present paper is to prove global bounds for the Lyapunov exponent and
the integrated density of states, i.e. bounds which hold for all E > 0 and describe the correct
asymptotic behaviour in the limit E → ∞. These results are formulated as theorems 1 and
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2 below. To the best of our knowledge the first article to look for the asymptotic behaviour
of γ (E) and N(E) in the limit E → ∞ was [2]. The best known estimate for the integrated
density of states is due to Kirsch and Martinelli [10, corollary 3.1]. This bound, however, does
not reproduce the correct asymptotic behaviour of N(E) in the large-energy limit. Another
estimate, which is due to Pastur and Figotin (see [20, section 5.11.B]), is valid for an R-
metrically transitive random field. Since our potential Vω(x) is a Z-metrically transitive field
this estimate does not apply directly to the present situation. Our two-sided estimate leads to
the bound (23) below which is very close to that of Pastur and Figotin.

In what follows C will denote a finite positive generic constant varying with the context,
but which depends only on f and κ .

2. The Lyapunov exponent

We recall that the scattering matrix S(E) for a pair of Hamiltonians (H ,H0) on L2(R) at fixed
energy E � 0 is a 2 × 2 unitary matrix

S(E) =
(
T (E) R(E)

L(E) T (E)

)
(4)

where L(E) and R(E) denote the left and right reflection amplitudes, respectively. The
transmission amplitude T (E) can vanish only for E = 0 (see [6, 8]). To any S-matrix (4) we
associate the unimodular matrix

�(E) =


1

T (E)
−R(E)
T (E)

L(E)

T (E)

1

T (E)

.
Let Tα(E), Rα(E) and Lα(E) be the elements of the S-matrix at energy E for the pair
of operators (H0 + αf , H0) and �α(E) the corresponding �-matrix. Also let �̃α(E) =
U

1/2
E �α(E)U

1/2
E with

UE =
 ei

√
E 0

0 e−i
√
E

.
Explicitly, we have

�̃α(E) =


ei

√
E

Tα(E)
−Rα(E)
Tα(E)

Lα(E)

Tα(E)

e−i
√
E

T (E)

.
Consider the matrix

A(E) = E
{
�̃α(ω)(E)

†�̃α(ω)(E)
} =

∫
�̃α(E)

†�̃α(E) dκ(α) � 0

where for brevity we write α(ω) instead of αj (ω) with some j ∈ Z. Let β+(E) be the largest
eigenvalue of A(E) and β−(E) be the smallest. It will turn out below that β+(E) � 1. Set
γ̃ (E) = (logβ+(E))/2 � 0.

The first main result of the present paper is:
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Theorem 1. Given the Hamiltonian (1) and the distribution κ for the coupling constant α, for
all E > 0 the resulting Lyapunov exponent satisfies the upper bound

γ (E) � γ̃ (E). (5)

In particular, γ (E) decays at least like 1/
√
E at infinity.

Proof. Let �(n)(E;ω) denote the �-matrix for the pair (H(n)(ω), H0), which by the
factorization property can be represented in the form

�(n)(E;ω) = U
−n−1/2
E

n∏
j=−n

�̃αj (ω)(E) · U−n−1/2
E . (6)

In fact, this factorization property is a consequence of the multiplicativity property of the
fundamental matrix (see [12] for a proof and for references to earlier work). A brief calculation
gives

|T (n)(E;ω)|−2 = 1
4 tr

(
�(n)(E;ω)†�(n)(E;ω)) + 1

2 . (7)

With E denoting the expectation with respect to the measure P, by Jensen’s inequality and (7)
we therefore have the estimate

e−2E{log |T (n)(E;ω)|} � E
{|T (n)(E;ω)|−2

} = 1
4 E
{
tr
(
�(n)(E;ω)†�(n)(E;ω))} + 1

2 . (8)

From the factorization property (6) it follows that

tr
(
�(n)(E;ω)†�(n)(E;ω)) = tr

( −n∏
j=n

�̃αj (ω)(E)
†

n∏
j=−n

�̃αj (ω)(E)

)
. (9)

We will now make use of the fact that the αk(ω) are IID random variables. For this purpose
define the 2 × 2 matrices Aj(E) � 0 recursively by A0 = I and

Aj(E) =
∫
�̃α(E)

†Aj−1(E)�̃α(E) dκ(α) (10)

such that, in particular, A(E) = A1(E). Now it is easy to see that

E
{
tr
(
�(n)(E;ω)†�(n)(E;ω))} = tr

(
E
(
�(n)(E;ω)†�(n)(E;ω))) = A2n+1(E). (11)

We now use the fact that the operator inequality 0 � A � A′ implies 0 � tr A � tr A′ and
B†AB � B†A′B for all B. In particular, we have A(E) � β+(E) I from which we obtain the
recursive estimates Aj(E) � β+(E)Aj−1(E) � · · · � β+(E)

j I and hence

E
{
tr
(
�(n)(E;ω)†�(n)(E;ω))} � 2β+(E)

2n+1. (12)

We note that with the same arguments one proves the lower bound

2β−(E)2n+1 � E
(
tr
(
�(n)(E;ω)†�(n)(E;ω))).

The relation (3), the estimate (12) combined with (8) and Fatou’s lemma now imply

γ (E) � 1

2
lim
n→∞

log E
{|T (n)(E;ω)|−2

}
2n + 1

� 1

2
lim
n→∞

log
(
β+(E)

2n+1/2 + 1
2

)
2n + 1

= 1

2
logβ+(E)

which proves the claim (5).
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To establish the final claim of the theorem we recall the following well known estimates
(see, e.g., [6, 8]):

|Tα(E)− 1| + |Rα(E)| � C
1√
E

(13)

valid for all large E > 0 uniformly for all α in the (compact) support of κ for fixed f .
Using the estimate (13) in (14) gives the estimate β+(E) � 1 + C/

√
E for all large E. Since

γ̃ (E) = (logβ+(E))/2, this concludes the proof of the theorem. �

Since γ (E) � 0, we obviously have the inequality β+(E) � 1 for almost all E. We will
now give a direct independent proof of this fact and simultaneously obtain an expression for
β+(E). The matrix A(E) may be written in the form

A(E) =
(
a(E) b(E)

b(E) a(E)

)
with

a(E) =
∫ (

2

|Tα(E)|2 − 1

)
dκ(α) (14)

b(E) = −ei
√
E

∫
Rα(E)

Tα(E)2
dκ(α). (15)

This gives the two eigenvalues of A(E) in the form

β±(E) = a(E)± |b(E)|. (16)

Obviously, a(E) � 1 and hence β+(E) � 1. In fact, a(E) = 1 is possible if and only if
Rα(E) = 0 for almost all α in the support of κ . Then also b(E) = 0 and β+(E) = 1. Actually,
(if supp κ has at least one non-isolated point) we do not believe there are non-trivial f and E
for which this holds, but in any case for such Es the Lyapunov exponent vanishes as is easily
verified (see also [12]), so this is a trivial confirmation of estimate (5) in this case. In the
remaining case we trivially have β+(E) > 1.

As an example we consider the random Kronig–Penney model which is formally obtained
from H(ω) by replacing f with the Dirac δ-function at the origin. Then we have (correcting
for a misprint on p 232 of [12])

Tα(E) =
(

1 + i
α

2
√
E

)−1

(17)

Rα(E) = −i
α

2
√
E

(
1 + i

α

2
√
E

)−1

(18)

and our method still applies. This gives

a(E) = 1 +
〈α2〉
4E

(19)

b(E) = i
〈α〉

2
√
E

− 〈α2〉
4E

. (20)

Here for brevity by 〈 〉 we denote the mean with respect to the probability measure P such that

〈α〉 = E{α(ω)} =
∫
α dκ(α) 〈α2〉 = E{α(ω)2} =

∫
α2 dκ(α).
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In particular, equation (19) gives

β+(E) = 1 +
〈α2〉
4E

+
1

2
√
E

( 〈α2〉
4E

+ 〈α〉2

)1/2

. (21)

So also in this case γ (E) decays at least like 1/
√
E as E → ∞ and at least like 1/E if the

mean 〈α〉 of α vanishes, i.e. if on average the coupling constant is zero.

3. The integrated density of states

We denote by ξα(E) the spectral shift function for the pair (H0 + αf,H0). The second main
result of this paper is given by:

Theorem 2. For all E > 0 the spectral shift density ξ(E) for the operator (1) satisfies the
following two-sided bound:

E{ξα(ω)(E)} − r(E) � ξ(E) � E{ξα(ω)(E)} + r(E) (22)

where

r(E) = min

{
1

2
,

1

π
E

{ |Rα(ω)(E)
1 − |Rα(ω)(E)|

}}
.

In particular, E{ξα(ω)(E)} and r(E) decays at least like 1/
√
E at infinity.

Remarks.

(a) One can easily prove the following estimate:

E{ξα(ω)(E)} − 1 � ξ(E) � E{ξα(ω)(E)} + 1

which is valid for all E ∈ R.
(b) By the monotonicity of the spectral shift function with respect to perturbation, ξ(E) � 0

if supp κ ⊂ R+ and ξ(E) � 0 if supp κ ⊂ R− for almost all E > 0.
(c) For large E > 0 by (13)

r(E) = min

{
1

2
,

1

π
E

{ |Rα(ω)(E)
1 − |Rα(ω)(E)|

}}
= 1

π
E

{ |Rα(ω)(E)
1 − |Rα(ω)(E)|

}
� C√

E
.

(d) In [12] we proved the relation ξ(E) = N0(E)−N(E) = √
E/π −N(E), where N0(E)

is the integrated density of states for the free operator H0. Theorem 2 then gives the
following two-sided bound for the integrated density of states:
√
E

π
− E{ξα(ω)(E)} − r(E) � N(E) �

√
E

π
− E{ξα(ω)(E)} + r(E) E > 0. (23)

There are some other upper bounds on the integrated density of states. A well known
result is a one-sided bound due to Kirsch and Martinelli [10, corollary 3.1],

N(E) � C√
η

E

{∫ 1/2

−1/2
(E + η − Vω(x))+ dx

}
for any η > 0 and all E ∈ R. This bound, however, does not reproduce the correct
asymptotic behaviour of N(E) in the large-energy limit.
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(e) The bounds (5) and (22) are of interest in the context of the Thouless formula (see, e.g.,
[20])

γ (E)− γ0(E) = −
∫

R

log |E − E′| dξ(E′) E ∈ R (24)

where γ0(E) = [max(0,−E)]1/2 is the Lyapunov exponent forH0. The Thouless formula
in the form (24) can be viewed as a subtracted dispersion relation (see, e.g., [12]).

Proof. In [12] we proved (see theorem 3.3 there and its proof) that for any two potentials V1

and V2 with (compact) disjoint supports one has

ξ(E;H0 + V1 + V2, H0) = ξ(E;H0 + V1, H0) + ξ(E;H0 + V2, H0) + ξ12(E)

with

ξ12(E) = − 1

2π i
log

1 − R1(E)L2(E)

1 − R1(E)L2(E)

where Rk(E) and Lk(E) are the right and left reflection coefficients for the Schrödinger
equation with the potential Vk , k = 1, 2. Actually, theorem 3.3 in [12] states that |ξ12(E)| � 1

2
for all E � 0. Now we improve on this estimate. As in [12] we set

Lk(E) = ak(E) eiδ(L)k Rk(E) = ak(E) eiδ(R)k k = 1, 2

with 0 � ak(E) � 1. Moreover, ak(E) = 1 only when Tk(E) = 0, which we recall can
happen only if E = 0. Therefore,

log
1 − R1(E)L2(E)

1 − R1(E)L2(E)
= log

1 − a1(E)a2(E) ei(δ(R)1 +δ(L)2 )

1 − a1(E)a2(E) e−i(δ(R)1 +δ(L)2 )

= −2i arctan
a1(E)a2(E) sin(δ(R)1 + δ(L)2 )

1 − a1(E)a2(E) cos(δ(R)1 + δ(L)2 )
.

By means of the inequality | arctan x| � |x| we immediately obtain

|ξ12(E)| � min

{
1

2
,

1

π

a1(E)a2(E)

1 − a1(E)a2(E)

}
. (25)

Since 0 � ak(E) < 1 we can replace a1(E)a2(E)(1 − a1(E)a2(E))
−1 either by a1(E)(1 −

a1(E))
−1 or by a2(E)(1 − a2(E))

−1.
Now let us consider the operator H(n)(ω) for finite n. Applying the inequality (25) we

obtain∣∣ξ (n)(E;ω)− ξαn(ω)(E)− ξα−n(ω)(E)− ξ (n−1)(E;ω)∣∣
� min

{
1

2
,

1

π

|Rαn(ω)(E)|
1 − |Rαn(ω)(E)|

}
+ min

{
1

2
,

1

π

|Rα−n(ω)(E)|
1 − |Rα−n(ω)(E)|

}
.

Repeating this procedure recursively we obtain∣∣∣∣∣ξ (n)(E;ω)−
n∑

j=−n
ξαj (ω)(E)

∣∣∣∣∣ �
n∑

j=−n
min

{
1

2
,

1

π

|Rαj (ω)(E)|
1 − |Rαj (ω)(E)|

}
.
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From the existence of the spectral shift density (2) by the Birkhoff ergodic theorem it follows
that ∣∣ξ(E)− E

{
ξα(ω)(E)

}∣∣ � E

{
min

{
1

2
,

1

π

|Rα(ω)(E)|
1 − |Rα(ω)(E)|

}}
.

From the obvious inequality

E

{
min

{
1

2
,

1

π

|Rα(ω)(E)|
1 − |Rα(ω)(E)|

}}
� min

{
1

2
,

1

π
E

{ |Rα(ω)(E)|
1 − |Rα(ω)(E)|

}}
the bound (22) follows.

For large E we have the following asymptotics [6] uniformly in α on compact sets:

Rα(E) = α

2i
√
E

∫
R

e2i
√
Etf (t) dt + O(E−1)

Lα(E) = α

2i
√
E

∫
R

e−2i
√
Etf (t) dt + O(E−1)

such that Rα(E) = O(1/
√
E) and Lα(E) = O(1/

√
E). If the single-site potential f has p

derivatives in L1(R) then Lα(E) = O(E−(p+1)/2) and Rα(E) = O(E−(p+1)/2) as E → ∞ [6].
The estimate E{ξα(ω)(E)} = O(1/

√
E) is proposition 3 below. �

As an example we consider again the random Kronig–Penney model. The single-site
spectral shift function is given in this case by

ξα(E) = 1

π
arctan

(
α

2
√
E

)
E > 0.

Therefore,

E
{
ξα(ω)(E)

} = 1

π

∫
R

arctan

(
α

2
√
E

)
dκ(α)

and thus ∣∣E {ξα(ω)(E)}∣∣ � 〈|α|〉
2π

√
E
.

Using the explicit expression for the reflection amplitude one can easily show that

〈|α|〉
2
√
E

+
〈α2〉
4E

� E

{ |Rα(ω)(E)|
1 − |Rα(ω)(E)|

}
� 〈|α|〉

2
√
E

+
〈α2〉
2E

.

We complete this section with an estimate on E{ξα(ω)(E)} in the general case. We will
prove:

Proposition 3. There is a constant c > 0 independent of E, f , and κ such that for all E > 0∣∣E {ξα(ω)(E)}∣∣ � C

2
√
E

E
{|α(ω)|1/2}2

∫ 1/2

−1/2
|f (x)| dx.

Let l1/2(L1) denote the Birman–Solomyak class of measurable functions V for which

‖V ‖l1/2(L1) =
[ ∞∑
j=−∞

(∫ j+1/2

j−1/2
|V (x)| dx

)1/2
]2

< ∞.

The claim of the proposition immediately follows from the following:
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Lemma 4. Let V ∈ l1/2(L1). There is a constant c1 independent of V and E such that

|ξ(E;H0 + V,H0)| � c1

2
√
E

‖V ‖l1/2(L1)

for all E > 0.

Proof. As proved in [23] there is a constant c2 > 0 independent of E and V such that

|ξ(E;H0 + V,H0)| � C1‖V 1/2R0(E + i0)|V |1/2‖J1

where V 1/2 = signV |V |1/2, R0(z) = (H0 − z)−1 and ‖ · ‖J1 denotes the trace class norm (see,
e.g., [21]). From the proof of proposition 5.6 in [21] it follows that

‖V 1/2R0(E + i0)|V |1/2‖J1 � c3√
E

‖V ‖l1/2(L1)

for all E > 0. �
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